1/7
Neural network fuzzy systems screenshot 0
Neural network fuzzy systems screenshot 1
Neural network fuzzy systems screenshot 2
Neural network fuzzy systems screenshot 3
Neural network fuzzy systems screenshot 4
Neural network fuzzy systems screenshot 5
Neural network fuzzy systems screenshot 6
Neural network fuzzy systems Icon

Neural network fuzzy systems

faadooengineers.com
Trustable Ranking Icon可信任
1K+下载次数
6MB大小
Android Version Icon4.0.1 - 4.0.2+
Android版本
5.4(26-02-2020)最新版本
-
(0 评价)
Age ratingPEGI-3
下载
详情评价版本信息
1/7

Neural network fuzzy systems介绍

The app is a complete free handbook of Neural network, fuzzy systems which cover important topics, notes, materials, news & blogs on the course. Download the App as a reference material & digital book for Brain and Cognitive Sciences, AI, computer science, machine learning, knowledge engineering programs & degree courses. 


This useful App lists 149 topics with detailed notes, diagrams, equations, formulas & course material, the topics are listed in 10 chapters. The app is must have for all the engineering science students & professionals. 


The app provides quick revision and reference to the important topics like a detailed flash card notes, it makes it easy & useful for the student or a professional to cover the course syllabus quickly before an exams or interview for jobs. 


Track your learning, set reminders, edit the study material, add favorite topics, share the topics on social media. 


You can also blog about engineering technology, innovation, engineering startups,  college research work, institute updates, Informative links on course materials & education programs from your smartphone or tablet or at http://www.engineeringapps.net/. 


Use this useful engineering app as your tutorial, digital book, a reference guide for syllabus, course material, project work, sharing your views on the blog. 


Some of the topics Covered in the app are:


1) Register Allocation and Assignment

2) The Lazy-Code-Motion Algorithm

3) Matrix Multiply: An In-Depth Example

4) Rsa topic 1

5) Introduction to Neural Networks

6) History of neural networks

7) Network architectures

8) Artificial Intelligence of neural network

9) Knowledge Representation

10) Human Brain

11) Model of a neuron

12) Neural Network as a Directed Graph

13) The concept of time in neural networks

14) Components of neural Networks

15) Network Topologies

16) The bias neuron

17) Representing neurons

18) Order of activation

19) Introduction to learning process

20) Paradigms of learning

21) Training patterns and Teaching input

22) Using training samples

23) Learning curve and error measurement

24) Gradient optimization procedures

25) Exemplary problems allow for testing self-coded learning strategies

26) Hebbian learning rule

27) Genetic Algorithms

28) Expert systems

29) Fuzzy Systems for Knowledge Engineering

30) Neural Networks for Knowledge Engineering

31) Feed-forward Networks

32) The perceptron, backpropagation and its variants

33) A single layer perceptron

34) Linear Separability

35) A multilayer perceptron

36) Resilient Backpropagation

37) Initial configuration of a multilayer perceptron

38) The 8-3-8 encoding problem

39) Back propagation of error

40) Components and structure of an RBF network

41) Information processing of an RBF network

42) Combinations of equation system and gradient strategies

43) Centers and widths of RBF neurons

44) Growing RBF networks automatically adjust the neuron density

45) Comparing RBF networks and multilayer perceptrons

46) Recurrent perceptron-like networks

47) Elman networks

48) Training recurrent networks

49) Hopfield networks

50) Weight matrix

51) Auto association and traditional application

52) Heteroassociation and analogies to neural data storage

53) Continuous Hopfield networks

54) Quantization

55) Codebook vectors

56) Adaptive Resonance Theory

57) Kohonen Self-Organizing Topological Maps

58) Unsupervised Self-Organizing Feature Maps

59) Learning Vector Quantization Algorithms for Supervised Learning

60) Pattern Associations

61) The Hopfield Network

62) Limitations to using the Hopfield network


Each topic is complete with diagrams, equations and other forms of graphical representations for better learning and quick understanding. 


Neural network, fuzzy systems is part of Brain and Cognitive Sciences, AI, computer science, machine learning, electrical, electronics, knowledge engineering education courses and technology degree programs at various universities. 

应用程序是神经网络,覆盖重要的课题,笔记,资料,新闻和博客在球场上的模糊系统的完全免费的手册。下载App作为参考材料和数字书,脑与认知科学,人工智能,计算机科学,机器学习,知识工程计划及学位课程。


这个有用的应用程序列出149议题有详细的注释,图表,公式,公式和课程材料,题目中列出了10个章节。应用程序是必须为所有的工程专业的学生和专业人士。


该应用程序提供了快速修改和参考像一个详细的闪存卡音符的重要课题,它可以很容易和有效为学生或专业到考试或面试的作业之前迅速覆盖课程大纲。


跟踪学习,设置提醒,编辑学习材料,加入喜爱的主题,分享到社交媒体的主题。


您也可以在博客的工程技术,创新,工程初创企业,高校科研工作,研究所的更新,从智能手机或平板电脑或http://www.engineeringapps.net/教材及教育计划提供信息的链接。


使用这个有用的应用程序设计为您的教程,数字图书,参考指南,教学大纲,课程材料,项目工作,在博客上分享您的观点。


一些在应用程序讨论的主题有:


1)寄存器分配和分配

2)懒惰代码运动算法

3)矩阵乘法:一个更深入的例子

4)的Rsa话题1

5)介绍神经网络

6)神经网络的历史

7)网络架构

8)神经网络的人工智能

9)知识表示

10)人脑

11)一神经元模型

12)神经网络作为向图

13)在神经网络中的时间观念

14)神经网络的组件

15)网络拓扑

16)偏压神经元

17)代表神经元

18)的激活顺序

19)介绍的学习过程

20)学习范式

21)培训模式和教学投入

22)使用训练样本

23)学习曲线,误差测量

24)梯度优化程序

25)典型的问题,以便检测设备齐全编码的学习策略

26)赫布学习规则

27)遗传算法

28)专家系统

29),知识工程模糊系统

30)神经网络的知识工程

31)前馈网络

32)感知器,反向传播及其变种

33)单层感知器

34)线性可分

35)多层感知

36)弹性反向传播

37)一个多层感知器的初始配置

38)8-3-8编码的问题

39)误差的反向传播

40)组件和RBF神经网络结构

41)一个RBF神经网络的信息处理

42)方程组和梯度策略的组合

43)中心和RBF神经元的宽度

44)成长RBF网络自动调节神经元密度

45)比较RBF网络和多层感知

46)经常感知类网络

47)埃尔曼网络

48)培训复发网络

49)Hopfield网络

50)权重矩阵

51)自动关联和传统的应用

52)异联想和类比神经数据存储

53)连续Hopfield网络

54)量化

55)码本向量

56)自适应谐振理论

57)基于Kohonen自组织拓扑地图

58)无监督自组织特征映射

59)学习矢量量化算法监督学习

60)图案协会

61)的Hopfield网络

62)限制使用Hopfield网


每个主题都配有图表,方程式等形式更好地学习和快速了解图形表示的。


神经网络,模糊系统在各大学脑与认知科学,人工智能,计算机科学,学习机,电机,电器,知识工程教育课程和技术学位课程的一部分。


Neural network fuzzy systems - 版本5.4

(26-02-2020)
其他版本
新特性# Version 5.3============* We have made it much Lighter and Faster* Advertisement management* New attrective and smooth UI* No special permission Required* Added project , study metarial and apptitude test* Google News Feeds Related To Subjects* Set Alarm (Reminder) for your topic to study* Set favourite topics to read* Check your Learning Progress========================================

还没有评论或评分!要留下第一条评论或评分,请

-
0 Reviews
5
4
3
2
1

Neural network fuzzy systems - APK信息

APK版本: 5.4程序包: com.faadooengineers.free_neuralnetworkandfuzzysystems
Android兼容性: 4.0.1 - 4.0.2+ (Ice Cream Sandwich)
开发商:faadooengineers.com隐私政策:http://www.engineeringapps.net/pages/privacy-policy权限:5
名称: Neural network fuzzy systems大小: 6 MB下载次数: 70版本: 5.4发布日期: 2020-02-26 10:53:40最小屏幕: SMALL支持的CPU:
程序包ID: com.faadooengineers.free_neuralnetworkandfuzzysystemsSHA1签名: 80:3F:30:70:C4:ED:E5:30:24:AB:38:DF:08:6C:85:9D:8D:4E:F4:A9开发商 (CN): faadoo_android组织 (O): 本地 (L): 国家/地区 (C): 州/市 (ST): 程序包ID: com.faadooengineers.free_neuralnetworkandfuzzysystemsSHA1签名: 80:3F:30:70:C4:ED:E5:30:24:AB:38:DF:08:6C:85:9D:8D:4E:F4:A9开发商 (CN): faadoo_android组织 (O): 本地 (L): 国家/地区 (C): 州/市 (ST):

Neural network fuzzy systems的最新版本

5.4Trust Icon Versions
26/2/2020
70 下载次数6 MB 大小
下载

其他版本

5.3Trust Icon Versions
26/3/2017
70 下载次数5 MB 大小
下载
5.2Trust Icon Versions
12/8/2016
70 下载次数7 MB 大小
下载
5.0Trust Icon Versions
3/12/2015
70 下载次数4 MB 大小
下载
1.3Trust Icon Versions
10/5/2015
70 下载次数3.5 MB 大小
下载
1.2Trust Icon Versions
5/8/2014
70 下载次数3.5 MB 大小
下载